Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 440, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520542

RESUMO

Globally, cardiovascular diseases (CVD) are one of the significant causes of death and are considered a major concern of human society. One of the most crucial objectives of scientists is to reveal the mechanisms associated with the pathogenesis of CVD, which has attracted the attention of many scientists. Accumulating evidence showed that the signal transducer and activator of transcription (STAT) signaling pathway is involved in various physiological and pathological processes. According to research on the molecular mechanisms of CVDs, the STAT family of proteins is one of the most crucial players in these diseases. Numerous studies have demonstrated the undeniable relevance of STAT family proteins in various CVDs. The aim of this review is to shed light on how STAT signaling pathways are related to CVD and the potential for using these signaling pathways as therapeutic targets.


Assuntos
Doenças Cardiovasculares , Humanos , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/terapia , Transdução de Sinais/fisiologia , Fatores de Transcrição STAT/metabolismo , Janus Quinases/metabolismo
2.
Cell Mol Biol Lett ; 27(1): 38, 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562685

RESUMO

Designing and producing an effective vaccine is the best possible way to reduce the burden and spread of a disease. During the coronavirus disease 2019 (COVID-19) pandemic, many large pharmaceutical and biotechnology companies invested a great deal of time and money in trying to control and combat the disease. In this regard, due to the urgent need, many vaccines are now available earlier than scheduled. Based on their manufacturing technology, the vaccines available for COVID-19 (severe acute respiratory syndrome coronavirus 2 (SAR-CoV2)) infection can be classified into four platforms: RNA vaccines, adenovirus vector vaccines, subunit (protein-based) vaccines, and inactivated virus vaccines. Moreover, various drugs have been deemed to negatively affect the progression of the infection via various actions. However, adaptive variants of the SARS-CoV-2 genome can alter the pathogenic potential of the virus and increase the difficulty of both drug and vaccine development. In this review, along with drugs used in COVID-19 treatment, currently authorized COVID-19 vaccines as well as variants of the virus are described and evaluated, considering all platforms.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Vacinas , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...